“What abilities make a data scientist successful? Think of him or her as a hybrid of data hacker, analyst, communicator, and trusted adviser. The combination is extremely powerful - and rare.”

At Ottawa University

The Bachelor of Science in Data Science & Technology is a modern program designed to prepare students for entry into almost every sector of the workforce as science-driven data analysts or data managers, as well as for acceptance into related graduate programs. Upon degree completion, students will be versed in how to learn from data to gain useful insight and make predictions. They will also be prepared to formulate context-relevant questions and hypotheses to drive data scientific research.

Curriculum includes significant coursework in the liberal arts; basic and advanced computer programming and development; network administration and architecture; basic and advanced database principles, programming and development; security across the database, network and enterprise; and a capstone course requiring the application of cumulative program knowledge and skills.

Careers

Because Data Science is an emerging field, graduates could find themselves applying for positions with a range of titles in addition to data scientist, including business analyst, data analyst, database administrator, systems analyst, business systems consultant, statistician, data engineer, and more. The increasing demand for data analysis will allow data scientists to find jobs across a range of industries and often within core management. They advise executives, product and project managers on the implications of the data for products, processes and decisions. Currently, the greatest demand for data scientists is in finance, health care, and social networking.

Education and Qualifications

A bachelor’s degree in data science is required for jobs with related titles, such as data administrator, while a master’s degree may be required for higher-level roles, such as statistician or data director. Continuing education is critical for data scientists in order to keep up with changes in technology, research and analysis methods, and industry demands.
Foundation Courses

ACC 20364 Accounting for Business Operations
ECO 20163 Macroeconomics
ECO 20263 Microeconomics
MAT 10643 College Algebra
OR
MAT 20043 Discrete Mathematics
OR
MAT 20143 Business Mathematics
OAD 30763 Business Statistics
OR
MAT 20044 Introduction to Statistics

DST 30003 Data Mining
Introduction of the major quantitative models designed for competitive, and system forecasting in today's complex and increasingly large data-gathering business environment. This course is useful for multiple disciplines, including marketing, finance, and health care. Topics include statistical quality control, exponential smoothing, and seasonally adjusted trend analysis. Emphasis is placed on a general understanding of theory, mechanics, application potential, available software packages, and templates. Prerequisite: MAT 20044 – Introduction to Probability and Statistics

DST 30006 Cyber Security
Exploration of advanced topics in cyber security. Students will be exposed to a wide spectrum of security activities, methods, methodologies, and procedures, with emphasis on practical aspects of Information Security. Topics include security principles, threats, attacks, security models, security policies, an overview of authentication, encryption, and certifications, security detection, business risk analysis, protection of information assets, examination of pre- and post-incident procedures, and an overview of the information security evaluation. Prerequisite: DST 20003 – Network Security

DST 30009 Data Visualization
An exposure to visual representation methods and techniques that facilitate the understanding of complex data. Students will be able to present a visual interpretation of data, and improve comprehension, communication, and decision making. The course covers how the human visual system processes and perceives images, good design practices for visualization, how to use existing tools to make visualizations, collecting data from web sites with Python, and programming interactive web-based visualizations. Prerequisites: ITS 16163 – Introduction to Programming

DST 49000 Seminar in Applied Information Science
An opportunity for students to use a number of common statistical analysis models in health services research. Emphasis is placed on a conceptual understanding of appropriate modeling techniques and the use of statistical software packages. The course also focuses on the application of methods to health services research questions, with an emphasis on regression design and interpretation. Prerequisites: DST 20003 – Lean Six Sigma, DST 30006 – Cyber Security, DST 30009 – Data Visualization

ITS 16163 Introduction to Computer Programming
Overview of computer programming languages, A broad overview of programming techniques, programming rules, basic I/O techniques and programming methods. A variety of programming languages will be introduced, including but not limited to Visual Basic, SQL, Reporting, and Object Oriented Programming.

ITS 20163 Introduction to Databases
Basic knowledge of how to collect, organize, and analyze data. An introduction to the concepts of query, updating, and administration of databases. Topics covered include normalization, table structures, table relationships, and data integrity.

ITS 30044 Advanced Database Systems
Covers advanced techniques of data and information. Topics include processing and optimization of queries, transactions, backup and recovery, self-tuning database systems, and data mining. Prerequisite: ITS 20163 Introduction to Databases

ITS 33470 Introduction to Networking
Identify basic networking concepts; Distinguish between network transmission types and connectivity devices; Understand TCP/IP components; Demonstrate knowledge of network hardware, cabling and operating systems.

ITS 47003 Ethical Hacking and Intrusion Detection
Course explores penetration-testing tools and techniques used to protect computer and cyber security. Topics include discovering vulnerabilities, detecting intrusion, networking security issues, and protecting data from potential intruders.

MAT 21044 Calculus I
First in a series of three courses that offers an intuitive approach to the major concepts and techniques of single-variable calculus. Topics include limits, continuity, derivatives of elementary functions and their applications, extrema, optimization, elementary integration applications, the Fundamental Theorem of Calculus, and l’Hospital’s rule. Prerequisite: A “C” or better in MAT 11143 Pre-Calculus or consent of instructor.